LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Origin of loose bound of the thermodynamic uncertainty relation in a dissipative two-level quantum system.

Photo from wikipedia

Thermodynamic uncertainty relations (TURs), originally discovered for classical systems, dictate the tradeoff between dissipation and fluctuations of irreversible current, specifying a minimal bound that constrains the two quantities. In a… Click to show full abstract

Thermodynamic uncertainty relations (TURs), originally discovered for classical systems, dictate the tradeoff between dissipation and fluctuations of irreversible current, specifying a minimal bound that constrains the two quantities. In a series of efforts to extend the relation to the one under more generalized conditions, it has been noticed that the bound is less tight in open quantum processes. To study the origin of the loose bounds, we consider an external field-driven transition dynamics of a two-level quantum system weakly coupled to the bosonic bath as a model of an open quantum system. The model makes it explicit that the imaginary part of quantum coherence, which contributes to dissipation to the environment, is responsible for loosening the TUR bound by suppressing the relative fluctuations in the irreversible current of transitions, whereas the real part of the coherence tightens it. Our study offers a better understanding of how quantum nature affects the TUR bound.

Keywords: origin loose; two level; thermodynamic uncertainty; quantum; quantum system

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.