LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model.

Photo from wikipedia

We study continuations of topological edge states in the Su-Schrieffer-Heeger model with on-site cubic (Kerr) nonlinearity, which is a 1D nonlinear photonic topological insulator (TI). Based on the topology of… Click to show full abstract

We study continuations of topological edge states in the Su-Schrieffer-Heeger model with on-site cubic (Kerr) nonlinearity, which is a 1D nonlinear photonic topological insulator (TI). Based on the topology of the underlying spatial dynamical system, we establish the existence of nonlinear edge states (edge solitons) for all positive energies in the topological band gap. We discover that these edge solitons are stable at any energy when the ratio between the weak and strong couplings is below a critical value. Above the critical coupling ratio, there are energy intervals where the edge solitons experience an oscillatory instability. Though our paper focuses on a photonic system, we also discuss the broader relevance of our methods and results to 1D nonlinear mechanical TIs.

Keywords: edge solitons; topological edge; heeger model; schrieffer heeger; edge

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.