LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approximating nonbacktracking centrality and localization phenomena in large networks.

Photo by kellysikkema from unsplash

Message-passing theories have proved to be invaluable tools in studying percolation, nonrecurrent epidemics, and similar dynamical processes on real-world networks. At the heart of the message-passing method is the nonbacktracking… Click to show full abstract

Message-passing theories have proved to be invaluable tools in studying percolation, nonrecurrent epidemics, and similar dynamical processes on real-world networks. At the heart of the message-passing method is the nonbacktracking matrix, whose largest eigenvalue, the corresponding eigenvector, and the closely related nonbacktracking centrality play a central role in determining how the given dynamical model behaves. Here we propose a degree-class-based method to approximate these quantities using a smaller matrix related to the joint degree-degree distribution of neighboring nodes. Our findings suggest that in most networks, degree-degree correlations beyond nearest neighbor are actually not strong, and our first-order description already results in accurate estimates, particularly when message-passing itself is a good approximation to the original model in question, that is, when the number of short cycles in the network is sufficiently low. We show that localization of the nonbacktracking centrality is also captured well by our scheme, particularly in large networks. Our method provides an alternative to working with the full nonbacktracking matrix in very large networks where this may not be possible due to memory limitations.

Keywords: large networks; nonbacktracking centrality; message passing; approximating nonbacktracking; localization

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.