LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-order correlations in species interactions lead to complex diversity-stability relationships for ecosystems.

Photo by brittaniburns from unsplash

How ecosystems maintain stability is an active area of research. Inspired by applications of random matrix theory in nuclear physics, May showed decades ago that in an ecosystem model with… Click to show full abstract

How ecosystems maintain stability is an active area of research. Inspired by applications of random matrix theory in nuclear physics, May showed decades ago that in an ecosystem model with many randomly interacting species, increasing species diversity decreases the stability of the ecosystem. There have since been many additions to May's efforts, one being an improved understanding the effect of mutualistic, competitive, or predator-prey-like correlations between pairs of species. Here we extend a random matrix technique developed in the context of spin-glass theory to study the effect of high-order correlations among species interactions. The resulting analytically solvable models include next-to-nearest-neighbor correlations in the species interaction network, such as the enemy of my enemy is my friend, as well as higher-order correlations. We find qualitative differences from May and others' models, including nonmonotonic diversity-stability relationships. Furthermore, inclusion of particular next-to-nearest-neighbor correlations in predator-prey as opposed to mutualist-competitive networks causes the former to transition to being more stable at higher species diversity. We discuss potential applicability of our results to microbiota engineering and to the ecology of interpredator interactions, such as cub predation between lions and hyenas as well as companionship between humans and dogs.

Keywords: diversity; stability; order correlations; species interactions; high order

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.