LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase-field lattice Boltzmann model for two-phase flows with large density ratio.

Photo from wikipedia

In this work, a lattice Boltzmann (LB) model based on the phase-field method is proposed for simulating large density ratio two-phase flows. An improved multiple-relaxation-time (MRT) LB equation is first… Click to show full abstract

In this work, a lattice Boltzmann (LB) model based on the phase-field method is proposed for simulating large density ratio two-phase flows. An improved multiple-relaxation-time (MRT) LB equation is first developed to solve the conserved Allen-Cahn (AC) equation. By utilizing a nondiagonal relaxation matrix and modifying the equilibrium distribution function and discrete source term, the conserved AC equation can be correctly recovered by the proposed MRT LB equation with no deviation term. Therefore, the calculations of the temporal derivative term in the previous LB models are successfully avoided. Numerical tests demonstrate that satisfactory accuracy can be achieved by the present model to solve the conserved AC equation. What is more, the discrete force term of the MRT LB equation for the incompressible Navier-Stokes equations is also simplified and modified in the present work. An alternative scheme to calculate the gradient terms of the order parameter involved in the discrete force term through the nonequilibrium part of the distribution function is also developed. To validate the ability of the present LB model for simulating large density ratio two-phase flows, series of benchmarks, including two-phase Poiseuille flow, droplet impacting on thin liquid film, and planar Taylor bubble are simulated. It is found that the results predicted by the present LB model agree well with the analytical, numerical, and experimental results.

Keywords: equation; large density; density ratio; model; phase; two phase

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.