LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantifying microstructural evolution via time-dependent reduced-dimension metrics based on hierarchical n-point polytope functions.

Photo from wikipedia

We devise reduced-dimension metrics for effectively measuring the distance between two points (i.e., microstructures) in the microstructure space and quantifying the pathway associated with microstructural evolution, based on a recently… Click to show full abstract

We devise reduced-dimension metrics for effectively measuring the distance between two points (i.e., microstructures) in the microstructure space and quantifying the pathway associated with microstructural evolution, based on a recently introduced set of hierarchical n-point polytope functions P_{n}. The P_{n} functions provide the probability of finding particular n-point configurations associated with regular n polytopes in the material system, and are a special subset of the standard n-point correlation functions S_{n} that effectively decompose the structural features in the system into regular polyhedral basis with different symmetries. The nth order metric Ω_{n} is defined as the L_{1} norm associated with the P_{n} functions of two distinct microstructures. By choosing a reference initial state (i.e., a microstructure associated with t_{0}=0), the Ω_{n}(t) metrics quantify the evolution of distinct polyhedral symmetries and can in principle capture emerging polyhedral symmetries that are not apparent in the initial state. To demonstrate their utility, we apply the Ω_{n} metrics to a two-dimensional binary system undergoing spinodal decomposition to extract the phase separation dynamics via the temporal scaling behavior of the corresponding Ω_{n}(t), which reveals mechanisms governing the evolution. Moreover, we employ Ω_{n}(t) to analyze pattern evolution during vapor deposition of phase-separating alloy films with different surface contact angles, which exhibit rich evolution dynamics including both unstable and oscillating patterns. The Ω_{n} metrics have potential applications in establishing quantitative processing-structure-property relationships, as well as real-time processing control and optimization of complex heterogeneous material systems.

Keywords: hierarchical point; microstructural evolution; reduced dimension; point; evolution; dimension metrics

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.