LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combinatorial topology and geometry of fracture networks.

Photo from wikipedia

A map is proposed from the space of planar surface fracture networks to a four-parameter mathematical space, summarizing the average topological connectivity and geometrical properties of a network idealized as… Click to show full abstract

A map is proposed from the space of planar surface fracture networks to a four-parameter mathematical space, summarizing the average topological connectivity and geometrical properties of a network idealized as a convex polygonal mesh. The four parameters are identified as the average number of nodes and edges, the angular defect with respect to regular polygons, and the isoperimetric ratio. The map serves as a low-dimensional signature of the fracture network and is visually presented as a pair of three-dimensional graphs. A systematic study is made of a wide collection of real crack networks for various materials, collected from different sources. To identify the characteristics of the real materials, several well-known mathematical models of convex polygonal networks are presented and worked out. These geometric models may correspond to different physical fracturing processes. The proposed map is shown to be discriminative, and the points corresponding to materials of similar properties are found to form closely spaced groups in the parameter space. Results for the real and simulated systems are compared in an attempt to identify crack networks of unknown materials.

Keywords: topology; combinatorial topology; topology geometry; geometry; fracture networks

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.