LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity.

Photo from wikipedia

A computational technique based on the lattice Boltzmann method (LBM) is developed to simulate the wettable particles adsorbed to a liquid-vapor interface under gravity. The proposed technique combines the improved… Click to show full abstract

A computational technique based on the lattice Boltzmann method (LBM) is developed to simulate the wettable particles adsorbed to a liquid-vapor interface under gravity. The proposed technique combines the improved smoothed-profile LBM for the treatment of moving solid particles in a fluid and the free-energy LBM for the description of a liquid-vapor system. Five benchmark two-dimensional problems are examined: (A) a stationary liquid drop in the vapor phase; a wettable particle adsorbed to a liquid-vapor interface in (B) the absence and (C) the presence of gravity; (D) two freely moving particles at a liquid-vapor interface in the presence of gravity (i.e., capillary flotation forces); and (E) two vertically constrained particles at a liquid-vapor interface (i.e., capillary immersion forces). The simulation results are in good quantitative agreement with theoretical estimations, demonstrating that the proposed technique can reproduce the capillary interactions between wettable particles at a liquid-vapor interface under gravity.

Keywords: particles liquid; vapor interface; liquid vapor; interface gravity

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.