LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling.

Photo by kattrinnaaaaa from unsplash

We numerically explore the quenching and amplification of self-excited thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling. On applying either type of coupling separately, we… Click to show full abstract

We numerically explore the quenching and amplification of self-excited thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling. On applying either type of coupling separately, we find that the presence of nonidentical heater powers can shrink the regions of amplitude death in both oscillators, while producing new regions of amplitude amplification in the weaker oscillator. We find that the magnitude of amplitude amplification grows with the heater power mismatch and with the total power input. These effects are also present when both types of coupling are applied simultaneously. This study highlights the critical role that nonidentical thermal loads can play in determining the amplitude response of coupled thermoacoustic systems, facilitating the design of control strategies for coupled oscillatorlike devices such as gas turbines.

Keywords: quenching amplification; thermoacoustic oscillations; two nonidentical; oscillations two; nonidentical rijke; amplification

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.