LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coexisting orbits and chaotic dynamics of a confined self-propelled particle.

Photo by dmey503 from unsplash

We investigate theoretically the dynamics of a confined active swimmer with velocity and orientation axis coupled to each other via a self-alignment torque. For an isotropic harmonic potential, this system… Click to show full abstract

We investigate theoretically the dynamics of a confined active swimmer with velocity and orientation axis coupled to each other via a self-alignment torque. For an isotropic harmonic potential, this system is known to exhibit two distinct dynamical phases: a climbing one, where the particle is oriented radially and undergoes angular Brownian motion, and a circularly orbiting phase. Here we show that for nonradially symmetric confinement an assortment of complex phenomena emerge. For an elliptic harmonic potential the orbiting phase splits into several periodic orbits with a diversity of shapes: ovals, lemniscates, and generalized lemniscates with multiple lobes. These orbits can coexist in the parameter space and decay into one another induced by noise. For anharmonic confining potentials, we report transitions from periodic to chaotic dynamics, as one changes the intensity of the self-alignment torque and noise-induced complex orbits. These results demonstrate that the combination of the shape of the trapping potential and self-alignment torque can induce a rich variety of nontrivial dynamical states of a confined active particle.

Keywords: chaotic dynamics; coexisting orbits; dynamics confined; alignment torque; particle; self alignment

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.