LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuum breakdown in compressible mixing layers.

Photo by visuals_by_fred from unsplash

Gas-kinetic simulations of rarefied and compressible mixing layers are performed to characterize continuum breakdown and the effect on the Kelvin-Helmholtz instability. The unified gas-kinetic scheme (UGKS) is used to perform… Click to show full abstract

Gas-kinetic simulations of rarefied and compressible mixing layers are performed to characterize continuum breakdown and the effect on the Kelvin-Helmholtz instability. The unified gas-kinetic scheme (UGKS) is used to perform the simulations at different Mach and Knudsen numbers. The UGKS stress tensor and heat-flux vector fields are compared against those given by the Navier-Stokes-Fourier constitutive equations. The most significant difference is seen in the shear stress and transverse heat flux. The study demonstrates the existence of two distinct continuum breakdown regimes, one at low and the other at high convective Mach numbers. Overall, at low convective Mach numbers, the deviation from continuum stress and heat flux appears to scale exclusively with the micro-macro length scale ratio given by the Knudsen number. On the other hand, at high convective Mach numbers, the deviation depends on the global micro-macro timescale ratio given by the product of Mach and Knudsen numbers. We further demonstrate that, unlike shear stresses and transverse heat flux, the deviations in normal stresses and the streamwise heat flux depend separately on Knudsen and Mach numbers. A local parameter called the gradient Knudsen number is proposed to characterize the rarefaction effects on the local momentum and thermal transport. Noncontinuum aspects of gas-kinetic stress-tensor and heat-flux behavior that Grad's 13-moment equation model reasonably captures are identified.

Keywords: heat flux; continuum breakdown; mach; compressible mixing; mixing layers

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.