LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exact face-landing probabilities for bouncing objects: Edge probability in the coin toss and the three-sided die problem.

Photo from wikipedia

Have you ever taken a disputed decision by tossing a coin and checking its landing side? This ancestral "heads or tails" practice is still widely used when facing undecided alternatives… Click to show full abstract

Have you ever taken a disputed decision by tossing a coin and checking its landing side? This ancestral "heads or tails" practice is still widely used when facing undecided alternatives since it relies on the intuitive fairness of equiprobability. However, it critically disregards an interesting third outcome: the possibility of the coin coming at rest on its edge. Provided this evident yet elusive possibility, previous works have already focused on capturing all three landing probabilities of thick coins, but have only succeeded computationally. Hence, an exact analytical solution for the toss of bouncing objects still remains an open problem due to the strongly nonlinear processes induced at each bounce. In this Letter we combine the classical equations of collisions with a statistical-mechanics approach to derive an exact analytical solution for the outcome probabilities of the toss of a bouncing object, i.e., the coin toss with arbitrarily inelastic bouncing. We validate the theoretical prediction by comparing it to previously reported simulations and experimental data; we discuss the moderate discrepancies arising at the highly inelastic regime; we describe the differences with previous, approximate models; we propose the optimal geometry for the fair cylindrical three-sided die; and we finally discuss the impact of current results within and beyond the coin toss problem.

Keywords: problem; three sided; bouncing objects; coin toss; landing probabilities; coin

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.