LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Universal scaling for the permeability of random packs of overlapping and nonoverlapping particles.

Photo from wikipedia

Constraining fluid permeability in porous media is central to a wide range of theoretical, industrial, and natural processes. In this Letter, we validate a scaling for fluid permeability in random… Click to show full abstract

Constraining fluid permeability in porous media is central to a wide range of theoretical, industrial, and natural processes. In this Letter, we validate a scaling for fluid permeability in random and lattice packs of spheres and show that the permeability of packs of both hard and overlapping spheres of any sphere size or size distribution collapse to a universal curve across all porosity ϕ in the range of ϕ_{c}<ϕ<1, where ϕ_{c} is the percolation threshold. We use this universality to demonstrate that permeability can be predicted using percolation theory at ϕ_{c}<ϕ≲0.30, Kozeny-Carman models at 0.30≲ϕ≲0.40, and dilute expansions of Stokes theory for lattice models at ϕ≳0.40. This result leads us to conclude that the inverse specific surface area, rather than an effective sphere size or pore size is a universal controlling length scale for hydraulic properties of packs of spheres. Finally, we extend this result to predict the permeability for some packs of concave nonspherical particles.

Keywords: universal scaling; permeability; size; scaling permeability; permeability random

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.