LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frustration-induced complexity in order-disorder transitions of the J_{1}-J_{2}-J_{3} Ising model on the square lattice.

We revisit the field-free Ising model on a square lattice with up to third-neighbor (NNNN) interactions, also known as the J_{1}-J_{2}-J_{3} model, in the mean-field approximation. Using a systematic enumeration… Click to show full abstract

We revisit the field-free Ising model on a square lattice with up to third-neighbor (NNNN) interactions, also known as the J_{1}-J_{2}-J_{3} model, in the mean-field approximation. Using a systematic enumeration procedure, we show that the region of phase space in which the high-temperature disordered phase is stable against all modes representing periodic magnetization patterns up to a given size is a convex polytope that can be obtained by solving a standard vertex enumeration problem. Each face of this polytope corresponds to a set of coupling constants for which a single set of modes, equivalent up to a symmetry of the lattice, bifurcates from the disordered solution. While the structure of this polytope is simple in the half-space J_{3}>0, where the NNNN interaction is ferromagnetic, it becomes increasingly complex in the half-space J_{3}<0, where the antiferromagnetic NNNN interaction induces strong frustration. We then pass to the limit Nā†’āˆž giving a closed-form description of the order-disorder surface in the thermodynamic limit, which shows that for J_{3}<0, the emergent ordered phases will have a "devil's surface"-like mode structure. Finally, using Monte Carlo simulations, we show that for small periodic systems, the mean-field analysis correctly predicts the dominant modes of the ordered phases that develop for coupling constants associated with the centroid of the faces of the disorder polytope.

Keywords: order disorder; ising model; polytope; model; square lattice; model square

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.