We elaborate a scheme of trapping-expulsion management (TEM), in the form of the quadratic potential periodically switching between confinement and expulsion, as a means of stabilization of two-dimensional dynamical states… Click to show full abstract
We elaborate a scheme of trapping-expulsion management (TEM), in the form of the quadratic potential periodically switching between confinement and expulsion, as a means of stabilization of two-dimensional dynamical states against the backdrop of the critical collapse driven by the cubic self-attraction with strength g. The TEM scheme may be implemented, as spatially or temporally periodic modulations, in optics or BEC, respectively. The consideration is carried out by dint of numerical simulations and variational approximation (VA). In terms of the VA, the dynamics amounts to a nonlinear Ermakov equation, which, in turn, is tantamount to a linear Mathieu equation. Stability boundaries are found as functions of g and parameters of the periodic modulation of the trapping potential. Below the usual collapse threshold, which is known, in the numerical form, as g
               
Click one of the above tabs to view related content.