LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-range and long-range correlations in driven dense colloidal mixtures in narrow pores.

Photo by pawelkadysz from unsplash

The system of a driven dense colloid mixture in a tube with diameter comparable to particle size is modeled by a generalization of the asymmetric simple exclusion process (ASEP) model.… Click to show full abstract

The system of a driven dense colloid mixture in a tube with diameter comparable to particle size is modeled by a generalization of the asymmetric simple exclusion process (ASEP) model. The generalization goes in two directions: relaxing the exclusion constraint by allowing several (but few) particles on a site and by considering two species of particles, which differ in size and transport coefficients. We calculate the nearest-neighbor correlations using a variant of the Kirkwood approximation and show by comparison with numerical simulations that the approximation provides quite accurate results. However, for long-range correlations, we show that the Kirkwood approximation is useless, as it predicts exponential decay of the density-density correlation function with distance, while simulation data indicate that the decay is algebraic. For the one-component system, we show that the decay is governed by a power law with universal exponent close to 2. In the two-component system, the correlation function behaves in a more complicated manner: Its sign oscillates but the envelope decays again very slowly and the decay is compatible with a power law with an exponent somewhat lower than 2. Therefore, our generalization of the ASEP belongs to a different universality class from the ensemble of generalized ASEP models which are mappable to zero-range processes.

Keywords: long range; range correlations; short range; range long; range; driven dense

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.