LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particles on demand for flows with strong discontinuities.

Photo from wikipedia

Particles-on-demand formulation of kinetic theory [B. Dorschner, F. Bösch and I. V. Karlin, Phys. Rev. Lett. 121, 130602 (2018)0031-900710.1103/PhysRevLett.121.130602] is used to simulate a variety of compressible flows with strong… Click to show full abstract

Particles-on-demand formulation of kinetic theory [B. Dorschner, F. Bösch and I. V. Karlin, Phys. Rev. Lett. 121, 130602 (2018)0031-900710.1103/PhysRevLett.121.130602] is used to simulate a variety of compressible flows with strong discontinuities in density, pressure, and velocity. Two modifications are applied to the original formulation of the particles-on-demand method. First, a regularization by Grad's projection of particles populations is combined with the reference frame transformations in order to enhance stability and accuracy. Second, a finite-volume scheme is implemented which allows tight control of mass, momentum, and energy conservation. The proposed model is validated with an array of challenging one- and two-dimensional benchmarks of compressible flows, including hypersonic and near-vacuum situations, Richtmyer-Meshkov instability, double Mach reflection, and astrophysical jet. Excellent performance of the modified particles-on-demand method is demonstrated beyond the limitations of other lattice Boltzmann-like approaches to compressible flows.

Keywords: demand flows; compressible flows; particles demand; strong discontinuities; flows strong

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.