LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

When multilayer links exchange their roles in synchronization.

Real world networks contain multiple layers of links whose interactions can lead to extraordinary collective dynamics, including synchronization. The fundamental problem of assessing how network topology controls synchronization in multilayer… Click to show full abstract

Real world networks contain multiple layers of links whose interactions can lead to extraordinary collective dynamics, including synchronization. The fundamental problem of assessing how network topology controls synchronization in multilayer networks remains open due to serious limitations of the existing stability methods. Towards removing this obstacle, we propose an approximation method which significantly enhances the predictive power of the master stability function for stable synchronization in multilayer networks. For a class of saddle-focus oscillators, including Rössler and piecewise linear systems, our method reduces the complex stability analysis to simply solving a set of linear algebraic equations. Using the method, we analytically predict surprising effects due to multilayer coupling. In particular, we prove that two coupling layers-one of which would alone hamper synchronization and the other would foster it-reverse their roles when used in a multilayer network. We also analytically demonstrate that increasing the size of a globally coupled layer, that in isolation would induce stable synchronization, makes the multilayer network unsynchronizable.

Keywords: links exchange; synchronization multilayer; exchange roles; multilayer; multilayer links; synchronization

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.