We study the effect of Kerr anharmonicity on the symmetry-breaking phenomena of coupled quantum oscillators. Two types of symmetry-breaking processes are studied, namely, the inhomogeneous steady state (or quantum oscillation… Click to show full abstract
We study the effect of Kerr anharmonicity on the symmetry-breaking phenomena of coupled quantum oscillators. Two types of symmetry-breaking processes are studied, namely, the inhomogeneous steady state (or quantum oscillation death state) and quantum chimera state. Remarkably, it is found that Kerr nonlinearity hinders the process of symmetry breaking in both the cases. We establish our results using direct simulation of the quantum master equation and analysis of the stochastic semiclassical model. Interestingly, in the case of quantum oscillation death, an increase in the strength of Kerr nonlinearity tends to favor the symmetry and at the same time decreases the degree of quantum mechanical entanglement. This paper presents a useful mean to control and engineer symmetry-breaking states for quantum technology.
               
Click one of the above tabs to view related content.