LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic metric geometry and the Fisher-Widom line of simple fluids.

Photo by rgaleriacom from unsplash

Two boundary lines are frequently discussed in the literature, separating state regions dominated by repulsion or attraction. The Fisher-Widom line indicates where the longest-range decay of the total pair correlation… Click to show full abstract

Two boundary lines are frequently discussed in the literature, separating state regions dominated by repulsion or attraction. The Fisher-Widom line indicates where the longest-range decay of the total pair correlation function crosses from monotonic to exponentially damped oscillatory. In the context of thermodynamic metric geometry, such a transition exists where the Ricci curvature scalar vanishes, R=0. To establish a possible relation between these two lines, R is worked out for four simple fluids. The truncated and shifted Lennard-Jones, a colloid-like and the square-well potential are analyzed to investigate the influence of the repulsive nature on the location of the R=0 line. For the longer-ranged Lennard-Jones potential, the influence of the cutoff radius on the R=0 line is studied. The results are compared with literature data on the Fisher-Widom line. Since such data are rare for the longer-ranged Lennard-Jones potential, dedicated simulations are carried out to determine the number of zeros of the total correlation function, which may provide approximate information about the position of the Fisher-Widom line. An increase of the repulsive strength toward hard sphere interaction leads to the disappearance of the R=0 line in the fluid phase. A rising attraction range results in the nonexistence of the Fisher-Widom line, while it has little effect on the R=0 line as long as it is present in the fluid state.

Keywords: fisher widom; widom line; thermodynamic metric; geometry; line

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.