LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective submodularity of influence maximization on temporal networks

Photo by lucabravo from unsplash

We study influence maximization on temporal networks. This is a special setting where the influence function is not submodular, and there is no optimality guarantee for solutions achieved via greedy… Click to show full abstract

We study influence maximization on temporal networks. This is a special setting where the influence function is not submodular, and there is no optimality guarantee for solutions achieved via greedy optimization. We perform an exhaustive analysis on both real and synthetic networks. We show that the influence function of randomly sampled sets of seeds often violates the necessary conditions for submodularity. However, when sets of seeds are selected according to the greedy optimization strategy, the influence function behaves effectively as a submodular function. Specifically, violations of the necessary conditions for submodularity are never observed in real networks, and only rarely in synthetic ones. The direct comparison with exact solutions obtained via brute-force search indicates that the greedy strategy provides approximate solutions that are well within the optimality gap guaranteed for strictly submodular functions. Greedy optimization appears, therefore, to be an effective strategy for the maximization of influence on temporal networks.

Keywords: function; influence maximization; influence; temporal networks; maximization temporal

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.