LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rectangle-triangle soft-matter quasicrystals with hexagonal symmetry.

Photo from wikipedia

Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from, e.g., kites and darts, squares and equilateral triangles, rhombi- or shield-shaped tiles, and can have a variety of… Click to show full abstract

Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from, e.g., kites and darts, squares and equilateral triangles, rhombi- or shield-shaped tiles, and can have a variety of different symmetries. However, almost all quasicrystals occurring in soft matter are of the dodecagonal type. Here we investigate a class of aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles. We show how to design soft-matter systems of particles interacting via pair potentials containing two length scales that form aperiodic stable states with two different examples of rectangle-triangle tilings. One of these is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond dodecagonal) quasicrystals can be designed in soft matter.

Keywords: matter; triangle soft; rectangle triangle; soft matter; hexagonal symmetry

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.