The mobility of a colloidal particle in a slit pore is modified by the particle's hydrodynamic coupling to the bounding surfaces and therefore depends on the particle's position within the… Click to show full abstract
The mobility of a colloidal particle in a slit pore is modified by the particle's hydrodynamic coupling to the bounding surfaces and therefore depends on the particle's position within the pore and its direction of motion. We report holographic particle tracking measurements of colloidal particles' diffusion and sedimentation between parallel horizontal walls that yield the mobility for motions perpendicular to the walls, including its dependence on height within the channel. These measurements complement previous studies that probed colloidal mobility parallel to confining surfaces. When interpreted with effective-medium theory, holographic characterization measurements yield estimates for the sedimenting spheres' densities that can be compared with kinematic values to draw insights into the spheres' compositions. This comparison suggests, for example, that the silica spheres used in this study are slightly porous, but that their pores are too small for water to penetrate.
               
Click one of the above tabs to view related content.