LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weighted averages in population annealing: Analysis and general framework.

Photo from wikipedia

Population annealing is a powerful sequential Monte Carlo algorithm designed to study the equilibrium behavior of general systems in statistical physics through massive parallelism. In addition to the remarkable scaling… Click to show full abstract

Population annealing is a powerful sequential Monte Carlo algorithm designed to study the equilibrium behavior of general systems in statistical physics through massive parallelism. In addition to the remarkable scaling capabilities of the method, it allows for measurements to be enhanced by weighted averaging [J. Machta, Phys. Rev. E 82, 026704 (2010)1539-375510.1103/PhysRevE.82.026704], admitting to reduce both systematic and statistical errors based on independently repeated simulations. We give a self-contained introduction to population annealing with weighted averaging, generalize the method to a wide range of observables such as the specific heat and magnetic susceptibility and rigorously prove that the resulting estimators for finite systems are asymptotically unbiased for essentially arbitrary target distributions. Numerical results based on more than 10^{7} independent population annealing runs of the two-dimensional Ising ferromagnet and the Edwards-Anderson Ising spin glass are presented in depth. In the latter case, we also discuss efficient ways of measuring spin overlaps in population annealing simulations.

Keywords: population annealing; annealing analysis; averages population; analysis general; population; weighted averages

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.