LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Color-gradient lattice Boltzmann model for immiscible fluids with density contrast.

Photo by arstyy from unsplash

We present a color-gradient-based lattice Boltzmann model for immiscible fluids with a large density contrast. The model employs the velocity-based equilibrium distribution function, initially proposed for the phase-field-based model by… Click to show full abstract

We present a color-gradient-based lattice Boltzmann model for immiscible fluids with a large density contrast. The model employs the velocity-based equilibrium distribution function, initially proposed for the phase-field-based model by Zu and He [Phys. Rev. E 87, 043301 (2013)1539-375510.1103/PhysRevE.87.043301], with a modification necessary to satisfy the kinematic condition at the interface. Different from the existing color-gradient models, the present model allows to specify interface mobility that is independent of the fluid density ratio. Further, we provide a unified framework, which uses the recursive representation of the lattice Boltzmann equation, to derive the governing equations of the system. The emergent color dynamics thus obtained, through an analysis of the segregation operator, is shown to obey the locally conservative Allen-Cahn equation. We use a series of benchmarks, which include a stationary drop, a layered Poiseuille flow, translation of a drop under a forced velocity field, the Rayleigh-Taylor instability, and the capillary intrusion test to demonstrate the model's ability in dealing with complex flow problems.

Keywords: color; color gradient; model; lattice boltzmann

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.