LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristic quantum phase in Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies.

Photo by hollymindrup from unsplash

We investigate the ground-state phase diagram for a spin-one quantum Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies in an external magnetic field by using the infinite time-evolving block decimation… Click to show full abstract

We investigate the ground-state phase diagram for a spin-one quantum Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies in an external magnetic field by using the infinite time-evolving block decimation algorithm to compute the ground-state fidelity per lattice site. We detect all phase boundaries solely by computing the ground-state fidelity per lattice site, with the prescription that a phase transition point is attributed to a pinch point on the ground-state fidelity surface. Furthermore, the results indicate that a magnetization plateau corresponds to a fidelity plateau on the ground-state fidelity surface, thus offering an alternative route for investigating the magnetization processes of quantum many-body spin systems. We characterize all phases by using the local-order parameter, the spin correlation, the momentum distribution of the spin correlation structure factor, and mutual information as a function of the lattice distance. The commensurate and incommensurate phases are distinguished by the mutual information. In addition, the central charges at criticalities are identified by performing a finite-entanglement scaling analysis. The results show that all phase transitions between spin liquids and magnetization plateaus belong to the Pokrovsky-Talapov universality class.

Keywords: ground state; antiferromagnetic chain; heisenberg antiferromagnetic; phase

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.