LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diverse coherence-resonance chimeras in coupled type-I excitable systems.

Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)10.1103/PhysRevLett.117.014102], which combines the effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II… Click to show full abstract

Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)10.1103/PhysRevLett.117.014102], which combines the effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II excitable systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider a paradigmatic model of type-I excitability, namely, the saddle-node infinite period model, and show that the coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our results using quantitative measures and map them in parameter space. This study reveals that the coherence-resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled excitable systems.

Keywords: type excitable; coherence; chimera; coherence resonance

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.