The Leidenfrost effect is a phenomenon in which a liquid, poured onto a glowing surface significantly hotter than the liquid's boiling point, produces a layer of vapor that prevents the… Click to show full abstract
The Leidenfrost effect is a phenomenon in which a liquid, poured onto a glowing surface significantly hotter than the liquid's boiling point, produces a layer of vapor that prevents the liquid from rapid evaporation. Rather than making physical contact, a drop of water levitates above the surface. The temperature above which the phenomenon occurs is called the Leidenfrost temperature. The reason for the existence of the Leidenfrost temperature, which is much higher than the boiling point of the liquid, is not fully understood and predicted. For water we prove that the Leidenfrost temperature corresponds to a bifurcation in the solutions of equations describing evaporation of a nonequilibrium liquid-vapor interface. For water, the theoretical values of obtained Leidenfrost temperature, and that of the liquid-vapor interface which is smaller than the boiling point of liquid, fit the experimental results found in the literature.
               
Click one of the above tabs to view related content.