LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Most probable path of an active Brownian particle.

Photo from wikipedia

In this study, we investigate the transition path of a free active Brownian particle (ABP) on a two-dimensional plane between two given states. The extremum conditions for the most probable… Click to show full abstract

In this study, we investigate the transition path of a free active Brownian particle (ABP) on a two-dimensional plane between two given states. The extremum conditions for the most probable path connecting the two states are derived using the Onsager-Machlup integral and its variational principle. We provide explicit solutions to these extremum conditions and demonstrate their nonuniqueness through an analogy with the pendulum equation indicating possible multiple paths. The pendulum analogy is also employed to characterize the shape of the globally most probable path obtained by explicitly calculating the path probability for multiple solutions. We comprehensively examine a translation process of an ABP to the front as a prototypical example. Interestingly, the numerical and theoretical analyses reveal that the shape of the most probable path changes from an I to a U shape and to the ℓ shape with an increase in the transition process time. The Langevin simulation also confirms this shape transition. We also discuss further method applications for evaluating a transition path in rare events in active matter.

Keywords: probable path; brownian particle; path; active brownian; transition

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.