We study the crossing time statistic of diffusing point particles between the two ends of expanding and narrowing two-dimensional conical channels under a transverse external gravitational field. The theoretical expression… Click to show full abstract
We study the crossing time statistic of diffusing point particles between the two ends of expanding and narrowing two-dimensional conical channels under a transverse external gravitational field. The theoretical expression for the mean first-passage time for such a system is derived under the assumption that the axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as a one-dimensional diffusion in an entropic potential with position-dependent effective diffusivity in terms of the modified Fick-Jacobs equation. We analyze the channel crossing dynamics in terms of the mean first-passage time, combining our analytical results with extensive two-dimensional Brownian dynamics simulations, allowing us to find the range of applicability of the one-dimensional approximation. We find that the effective particle diffusivity decreases with increasing amplitude of the external potential. Remarkably, the mean first-passage time for crossing the channel is shown to assume a minimum at finite values of the potential amplitude.
               
Click one of the above tabs to view related content.