LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluctuation-based fracture mechanics of heterogeneous materials.

Photo from wikipedia

We present results of a hybrid analytical-simulation investigation of the fracture resistance of heterogeneous materials. We show that bond-energy fluctuations sampled by Monte Carlo simulations in the semigrand canonical ensemble… Click to show full abstract

We present results of a hybrid analytical-simulation investigation of the fracture resistance of heterogeneous materials. We show that bond-energy fluctuations sampled by Monte Carlo simulations in the semigrand canonical ensemble provide a means to rationalize the complexity of heterogeneous fracture processes, encompassing probability and percolation theories of fracture. For a number of random and textured model materials, we derive upper and lower bounds of fracture resistance and link bond fracture fluctuations to statistical descriptors of heterogeneity, such as two-point correlation functions, to identify the origin of toughening mechanisms. This includes a shift from short- to long-range interactions of bond fracture processes in random systems to the transition from critical to subcritical bond fracture percolation in textured materials and the activation of toughness reserves at compliant interfaces. Induced by elastic mismatch, they connect to a number of disparate experimental observations, including toughening of brittle solids by deformable polymers or organics in, e.g., gas shale, nacre; stress-induced transformational toughening in ceramics; and toughening of sparse elastic networks in hydrogels, to name a few.

Keywords: fracture; bond fracture; heterogeneous materials; mechanics; fluctuation based

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.