LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.

Photo by bagasvg from unsplash

Scroll wave dynamics are thought to underlie life-threatening ventricular fibrillation. However, direct observations of three-dimensional electrical scroll waves remain elusive, as there is no direct way to measure action potential… Click to show full abstract

Scroll wave dynamics are thought to underlie life-threatening ventricular fibrillation. However, direct observations of three-dimensional electrical scroll waves remain elusive, as there is no direct way to measure action potential wave patterns transmurally throughout the thick ventricular heart muscle. Here we study whether it is possible to reconstruct simulated scroll waves and scroll wave chaos using deep learning. We trained encoding-decoding convolutional neural networks to predict three-dimensional scroll wave dynamics inside bulk-shaped excitable media from two-dimensional observations of the wave dynamics on the bulk's surface. We tested whether observations from one or two opposing surfaces would be sufficient and whether transparency or measurements of surface deformations enhances the reconstruction. Further, we evaluated the approach's robustness against noise and tested the feasibility of predicting the bulk's thickness. We distinguished isotropic and anisotropic, as well as opaque and transparent, excitable media as models for cardiac tissue and the Belousov-Zhabotinsky chemical reaction, respectively. While we demonstrate that it is possible to reconstruct three-dimensional scroll wave dynamics, we also show that it is challenging to reconstruct complicated scroll wave chaos and that prediction outcomes depend on various factors such as transparency, anisotropy, and ultimately the thickness of the medium compared to the size of the scroll waves. In particular, we found that anisotropy provides crucial information for neural networks to decode depth, which facilitates the reconstructions. In the future, deep neural networks could be used to visualize intramural action potential wave patterns from epi- or endocardial measurements.

Keywords: neural networks; dimensional scroll; scroll wave; three dimensional; scroll waves; scroll

Journal Title: Physical review. E
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.