We experimentally investigate the microfluidic flow of oil-in-water nanoemulsions in aqueous sodium dodecyl sulfate (SDS) solutions having different concentrations and injection flow rates. A coaxial microfluidic device is employed to… Click to show full abstract
We experimentally investigate the microfluidic flow of oil-in-water nanoemulsions in aqueous sodium dodecyl sulfate (SDS) solutions having different concentrations and injection flow rates. A coaxial microfluidic device is employed to explore the behavior of nanoemulsion threads in these sheathing SDS solutions. Using two high-speed cameras, which simultaneously capture both top and side views, we reveal a variety of flow phenomena, ranging from simple core-annular flow to complex flows, such as gravitational, inertial, and buckling thread flows. By analyzing these complex flows, we develop a methodology that elucidates the relationship of core-annular and gravitational flows at low flow rates. Further, we examine the off-axis displacements and bending of core threads at large flow rates, and we study the buckling dynamics of nanoemulsion threads subjected to osmotic stresses caused by large SDS concentrations in the sheathing fluid.
               
Click one of the above tabs to view related content.