Higher-order spacing ratios are investigated analytically using a Wigner-like surmise for Gaussian ensembles of random matrices. For a kth order spacing ratio (r^{(k)},k>1) the matrix of dimension 2k+1 is considered.… Click to show full abstract
Higher-order spacing ratios are investigated analytically using a Wigner-like surmise for Gaussian ensembles of random matrices. For a kth order spacing ratio (r^{(k)},k>1) the matrix of dimension 2k+1 is considered. A universal scaling relation for this ratio, known from earlier numerical studies, is proved in the asymptotic limits of r^{(k)}→0 and r^{(k)}→∞.
               
Click one of the above tabs to view related content.