LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stochastic effects in bacterial communication mediated by extracellular vesicles.

Photo from wikipedia

Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While,… Click to show full abstract

Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules.

Keywords: extracellular vesicles; stochastic effects; signal molecules; effects bacterial; bacterial communication

Journal Title: Physical review. E
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.