We present the analysis of the slowing down exhibited by stochastic dynamics of a ring-exchange model on a square lattice, by means of numerical simulations. We find the preservation of… Click to show full abstract
We present the analysis of the slowing down exhibited by stochastic dynamics of a ring-exchange model on a square lattice, by means of numerical simulations. We find the preservation of coarse-grained memory of initial state of density-wave types for unexpectedly long times. This behavior is inconsistent with the prediction from a low frequency continuum theory developed by assuming a mean-field solution. Through a detailed analysis of correlation functions of the dynamically active regions, we exhibit an unconventional transient long ranged structure formation in a direction which is featureless for the initial condition, and argue that its slow melting plays a crucial role in the slowing-down mechanism. We expect our results to be relevant also for the dynamics of quantum ring-exchange dynamics of hard-core bosons and more generally for dipole moment conserving models.
               
Click one of the above tabs to view related content.