LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local chiral inversion of chiral nematic liquid crystals in cylinders.

Photo by acfb5071 from unsplash

On the basis of Landau-de Gennes theory and the finite-difference iterative method, the autonomic modulation of chiral inversion in a cylindrical cavity with degenerate planar anchoring is investigated. Under the… Click to show full abstract

On the basis of Landau-de Gennes theory and the finite-difference iterative method, the autonomic modulation of chiral inversion in a cylindrical cavity with degenerate planar anchoring is investigated. Under the applied helical twisting power (inversely related to the pitch P), a chiral inversion can be achieved due to the nonplanar geometry effect, and the inversion capacity rises with the increase of the helical twisting power. The combined effect of the saddle-splay K_{24} contribution (corresponding to the L_{24} term in Landau-de Gennes theory) and the helical twisting power are analyzed. It is found that the chiral inversion is more strongly modulated on the condition that the chirality of spontaneous twist is opposite to that of applied helical twisting power. Further, larger values of K_{24} will induce larger modulation of the twist degree and smaller modulation of the inverted region. The autonomic modulation of chiral inversion shows great potential for chiral nematic liquid crystal materials to be used in smart devices, such as light-controlled switches and nanoparticle transporters.

Keywords: nematic liquid; inversion; twisting power; chiral nematic; helical twisting; chiral inversion

Journal Title: Physical review. E
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.