LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accessibility of the surface fractal dimension during film growth.

Photo by seemurray from unsplash

Fractal properties on self-affine surfaces of films growing under nonequilibrium conditions are important in understanding the corresponding universality class. However, measurement of the surface fractal dimension has been intensively investigated… Click to show full abstract

Fractal properties on self-affine surfaces of films growing under nonequilibrium conditions are important in understanding the corresponding universality class. However, measurement of the surface fractal dimension has been intensively investigated and is still very problematic. In this work, we report the behavior of the effective fractal dimension in the context of film growth involving lattice models believed to belong to the Kardar-Parisi-Zhang (KPZ) universality class. Our results, which are presented for growth in a d-dimensional substrate (d=1,2) and use the three-point sinuosity (TPS) method, show universal scaling of the measure M, which is defined in terms of discretization of the Laplacian operator applied to the height of the film surface, M=t^{δ}g[Θ], where t is the time, g[Θ] is a scale function, δ=2β, Θ≡τt^{-1/z}, β, and z are the KPZ growth and dynamical exponents, respectively, and τ is a spatial scale length used to compute M. Importantly, we show that the effective fractal dimensions are consistent with the expected KPZ dimensions for d=1,2, if Θ≲0.3, which include a thin film regime for the extraction of the fractal dimension. This establishes the scale limits in which the TPS method can be used to accurately extract effective fractal dimensions that are consistent with those expected for the corresponding universality class. As a consequence, for the steady state, which is inaccessible to experimentalists studying film growth, the TPS method provided effective fractal dimension consistent with the KPZ ones for almost all possible τ, i.e., 1≲τ

Keywords: film growth; dimension; fractal dimension; surface

Journal Title: Physical review. E
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.