Determining the universality class of a system exhibiting critical phenomena is one of the central problems in physics. There are several methods to determine this universality class from data. As… Click to show full abstract
Determining the universality class of a system exhibiting critical phenomena is one of the central problems in physics. There are several methods to determine this universality class from data. As methods to collapse plots onto scaling functions, polynomial regression, which is less accurate, and Gaussian process regression, which provides high accuracy and flexibility but is computationally expensive, have been proposed. In this paper, we propose a regression method using a neural network. The computational complexity is linear only in the number of data points. We demonstrate the proposed method for the finite-size scaling analysis of critical phenomena in the two-dimensional Ising model and bond percolation problem to confirm the performance. This method efficiently obtains the critical values with accuracy in both cases.
               
Click one of the above tabs to view related content.