LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evidence of experimental three-wave resonant interactions between two dispersion branches.

Photo by bagasvg from unsplash

We report the observation of nonlinear three-wave resonant interactions between two different branches of the dispersion relation of hydrodynamic waves, namely the gravity-capillary and sloshing modes. These atypical interactions are… Click to show full abstract

We report the observation of nonlinear three-wave resonant interactions between two different branches of the dispersion relation of hydrodynamic waves, namely the gravity-capillary and sloshing modes. These atypical interactions are investigated within a torus of fluid for which the sloshing mode can be easily excited. A triadic resonance instability is then observed due to this three-wave two-branch interaction mechanism. An exponential growth of the instability and phase locking are evidenced. The efficiency of this interaction is found to be maximal when the gravity-capillary phase velocity matches the group velocity of the sloshing mode. For a stronger forcing, additional waves are generated by a cascade of three-wave interactions populating the wave spectrum. Such a three-wave two-branch interaction mechanism is probably not restricted to hydrodynamics and could be of interest in other systems involving several propagation modes.

Keywords: resonant interactions; three wave; dispersion; interactions two; wave resonant; evidence experimental

Journal Title: Physical review. E
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.