Introduced in the early days of random matrix theory, the autocovariances δI_{k}^{j}=cov(s_{j},s_{j+k}) of level spacings {s_{j}} accommodate detailed information on the correlations between individual eigenlevels. It was first conjectured by… Click to show full abstract
Introduced in the early days of random matrix theory, the autocovariances δI_{k}^{j}=cov(s_{j},s_{j+k}) of level spacings {s_{j}} accommodate detailed information on the correlations between individual eigenlevels. It was first conjectured by Dyson that the autocovariances of distant eigenlevels in the unfolded spectra of infinite-dimensional random matrices should exhibit a power-law decay δI_{k}^{j}≈-1/βπ^{2}k^{2}, where β is the symmetry index. In this Letter, we establish an exact link between the autocovariances of level spacings and their power spectrum, and show that, for β=2, the latter admits a representation in terms of a fifth Painlevé transcendent. This result is further exploited to determine an asymptotic expansion for autocovariances that reproduces the Dyson formula as well as provides the subleading corrections to it. High-precision numerical simulations lend independent support to our results.
               
Click one of the above tabs to view related content.