LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flow and evolution of ice-sucrose crystal mushes.

Photo from wikipedia

We study the rheology of suspensions of ice crystals at moderate to high volume fractions in a sucrose solution in which they are partially soluble, a model system for a… Click to show full abstract

We study the rheology of suspensions of ice crystals at moderate to high volume fractions in a sucrose solution in which they are partially soluble, a model system for a wide class of crystal mushes or slurries. Under step changes in shear rate, the viscosity changes to a relaxed value over several minutes, in a manner well fitted by a single exponential. The behavior of the relaxed viscosity is power-law shear thinning with shear rate, with an exponent of -1.76±0.25, so that shear stress falls with increasing shear rate. On longer time scales, the crystals ripen (leading to a falling viscosity) so that the mean radius increases with time to the power 0.14±0.07. We speculate that this unusually small exponent is due to the interaction of classical ripening dynamics with abrasion or breakup under flow. We compare the rheological behavior to mechanistic models based on flow-induced aggregation and breakup of crystal clusters, finding that the exponents can be predicted from liquid phase sintering and breakup by brittle fracture.

Keywords: ice sucrose; evolution ice; sucrose crystal; shear rate; flow evolution; crystal mushes

Journal Title: Physical Review E
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.