LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alternative extrapolation-based symmetry boundary implementations for the axisymmetric lattice Boltzmann method.

Photo by benhershey from unsplash

In this study, alternative symmetry boundary implementations for the axisymmetric lattice Boltzmann (LB) method are proposed based on the nonequilibrium extrapolation and the direct extrapolation schemes. The proposed boundary schemes… Click to show full abstract

In this study, alternative symmetry boundary implementations for the axisymmetric lattice Boltzmann (LB) method are proposed based on the nonequilibrium extrapolation and the direct extrapolation schemes. The proposed boundary schemes are directly implemented on the symmetry axis, and the postcollision distribution function and the macroscopic variables at the boundary nodes are extrapolated from the inner fluid nodes; thereby, the singularities arising at the symmetry axis (r=0) during the collision and the macroscopic variable calculations are completely avoided. The accuracy of the present schemes is consistent with the well-established axisymmetric LB model. Moreover, in comparison with previous symmetry boundary schemes, the present implementations are slightly more accurate than the symmetry scheme by Guo et al. [Phys. Rev. E 79, 046708 (2009)10.1103/PhysRevE.79.046708] and numerically more stable than the specular reflection-based schemes.

Keywords: extrapolation; boundary implementations; implementations axisymmetric; axisymmetric lattice; symmetry; symmetry boundary

Journal Title: Physical Review E
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.