We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a, characteristic swim speed U_{0}, reorientation time τ_{R},… Click to show full abstract
We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a, characteristic swim speed U_{0}, reorientation time τ_{R}, and mechanical energy k_{s}T_{s}=ζ_{a}U_{0}^{2}τ_{R}/6, where ζ_{a} is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity D_{P}=k_{B}T/ζ_{P}, where k_{B}T is the thermal energy of the solvent and ζ_{P} is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pe_{s}=U_{0}a/D_{P}. The active contribution to the diffusivity scales as Pe_{s}^{2} for weak swimming and Pe_{s} for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τ_{R}, the active diffusivity scales as k_{s}T_{s}/ζ_{P}: the probe moves as if it were immersed in a solvent with energy k_{s}T_{s} rather than k_{B}T.
               
Click one of the above tabs to view related content.