Polymer models are used to describe chromatin, which can be folded at different spatial scales by binding molecules. By folding, chromatin generates loops of various sizes. We present here a… Click to show full abstract
Polymer models are used to describe chromatin, which can be folded at different spatial scales by binding molecules. By folding, chromatin generates loops of various sizes. We present here a statistical analysis of the randomly cross-linked (RCL) polymer model, where monomer pairs are connected randomly, generating a heterogeneous ensemble of chromatin conformations. We obtain asymptotic formulas for the steady-state variance, encounter probability, the radius of gyration, instantaneous displacement, and the mean first encounter time between any two monomers. The analytical results are confirmed by Brownian simulations. Finally, the present results are used to extract the mean number of cross links in a chromatin region from conformation capture data.
               
Click one of the above tabs to view related content.