LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semiclassical catastrophe theory of simple bifurcations.

Photo by benchaccounting from unsplash

The Fedoriuk-Maslov catastrophe theory of caustics and turning points is extended to solve the bifurcation problems by the improved stationary phase method (ISPM). The trace formulas for the radial power-law… Click to show full abstract

The Fedoriuk-Maslov catastrophe theory of caustics and turning points is extended to solve the bifurcation problems by the improved stationary phase method (ISPM). The trace formulas for the radial power-law (RPL) potentials are presented by the ISPM based on the second- and third-order expansion of the classical action near the stationary point. A considerable enhancement of contributions of the two orbits (pair consisting of the parent and newborn orbits) at their bifurcation is shown. The ISPM trace formula is proposed for a simple bifurcation scenario of Hamiltonian systems with continuous symmetries, where the contributions of the bifurcating parent orbits vanish upon approaching the bifurcation point due to the reduction of the end-point manifold. This occurs since the contribution of the parent orbits is included in the term corresponding to the family of the newborn daughter orbits. Taking this feature into account, the ISPM level densities calculated for the RPL potential model are shown to be in good agreement with the quantum results at the bifurcations and asymptotically far from the bifurcation points.

Keywords: catastrophe theory; theory simple; bifurcation; semiclassical catastrophe

Journal Title: Physical Review E
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.