LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetics of biochemical sensing by single cells and populations of cells.

Photo from wikipedia

We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs)… Click to show full abstract

We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs) for both strong communication and extrinsic noise only. We modified a previous model [Bialek and Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005)PNASA60027-842410.1073/pnas.0504321102] to eliminate the singularities in the fluctuation correlations by considering a uniform receptor distribution over the surface of each cell with a finite radius a. The modified model enables a simple and rigorous mathematical treatment of the collective sensing phenomenon. We then derive the scaling of the SNR for both juxtacrine and autocrine cases in all dimensions. For the optimal locations of the cells in the autocrine case, we find identical scaling for both two and three dimensions.

Keywords: sensing single; populations cells; biochemical sensing; single cells; kinetics biochemical; cells populations

Journal Title: Physical Review E
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.