We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrödinger equation, which… Click to show full abstract
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrödinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
               
Click one of the above tabs to view related content.