LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observing golden-mean universality class in the scaling of thermal transport.

Photo from wikipedia

We address the issue of whether the golden-mean [ψ=(sqrt[5]+1)/2≃1.618] universality class, as predicted by several theoretical models, can be observed in the dynamical scaling of thermal transport. Remarkably, we show… Click to show full abstract

We address the issue of whether the golden-mean [ψ=(sqrt[5]+1)/2≃1.618] universality class, as predicted by several theoretical models, can be observed in the dynamical scaling of thermal transport. Remarkably, we show strong evidence that ψ appears to be the scaling exponent of heat mode correlation in a purely quartic anharmonic chain. This observation seems to somewhat deviate from the previous expectation and we explain it by the unusual slow decay of the cross correlation between heat and sound modes. Whenever the cubic anharmonicity is included, this cross correlation gradually dies out and another universality class with scaling exponent γ=5/3, as commonly predicted by theories, seems recovered. However, this recovery is accompanied by two interesting phase transition processes characterized by a change of symmetry of the potential and a clear variation of the dynamic structure factor, respectively. Due to these transitions, an additional exponent close to γ≃1.580 emerges. All this evidence suggests that, to gain a full prediction of the scaling of thermal transport, more ingredients should be taken into account.

Keywords: scaling thermal; universality class; thermal transport

Journal Title: Physical Review E
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.