LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence of surface tension on temperature.

We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering… Click to show full abstract

We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k∼(Bi)^{1/2}, where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi), Galileo number (Ga), and inverse capillary number (Σ). Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.

Keywords: instability thin; surface; number; marangoni instability; surface tension; instability

Journal Title: Physical Review E
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.